Deep Learning in Semantic Kernel Spaces
نویسندگان
چکیده
Kernel methods enable the direct usage of structured representations of textual data during language learning and inference tasks. Expressive kernels, such as Tree Kernels, achieve excellent performance in NLP. On the other side, deep neural networks have been demonstrated effective in automatically learning feature representations during training. However, their input is tensor data, i.e., they cannot manage rich structured information. In this paper, we show that expressive kernels and deep neural networks can be combined in a common framework in order to (i) explicitly model structured information and (ii) learn non-linear decision functions. We show that the input layer of a deep architecture can be pre-trained through the application of the Nyström low-rank approximation of kernel spaces. The resulting “kernelized” neural network achieves state-of-the-art accuracy in three different tasks.
منابع مشابه
Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملLearning Kernels for Semantic Clustering: A Deep Approach
In this thesis proposal we present a novel semantic embedding method, which aims at consistently performing semantic clustering at sentence level. Taking into account special aspects of Vector Space Models (VSMs), we propose to learn reproducing kernels in classification tasks. By this way, capturing spectral features from data is possible. These features make it theoretically plausible to mode...
متن کاملA representer theorem for deep kernel learning
In this paper we provide a representer theorem for a concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. This fundamental result serves as a first mathematical foundation for the analysis of machine learning algorithms based on compositions of functions. As a direct consequence of this new representer theorem, the corresponding infinite-dimensional m...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل